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Embryonic pluripotency can be recapitulated in vitro by a spectrum of pluripotent stem cell states stabilized
with different culture conditions. Their distinct spatiotemporal characteristics provide an unprecedented tool
for the study of early human development. The newly unveiled ability of some stem cell types for crossing
xeno-barriers will facilitate the generation of interspecies chimeric embryos from distant species, including
humans. When combined with efficient zygote genome editing technologies, xenogeneic human pluripotent
stem cells may also open new frontiers for regenerative medicine applications, including the possibility of
generating human organs in animals via interspecies chimeric complementation.
Introduction
Following a precisely choreographed and spatiotemporally

controlled developmental program, pluripotent cells, which are

initially contained in the embryonic epiblast, can give rise to all

cell lineages of the developing and adult organism. Embryonic

pluripotency is short lived but can be captured in vitro under arti-

ficial culture conditions. Unlike the epiblast, pluripotent cells in

culture can self-renew indefinitely while retaining multilineage

differentiation abilities. Pluripotency can also be reinstated in

cells of later developmental stages through culture adaptation

(e.g., embryonic germ cells) (Matsui et al., 1992; Resnick et al.,

1992), somatic cell nuclear transfer (SCNT) (Gurdon, 1962; Wil-

mut et al., 2002), or cellular reprogramming with defined tran-

scription factors (iPSCs) (Takahashi and Yamanaka, 2006).

These artificially converted pluripotent cells exhibit molecular

and functional properties similar to and characteristic of the em-

bryonic epiblast. Additionally, recent studies have introduced a

new twist by unveiling subtle but functionally important, molecu-

lar differences among stem cells from distinct temporal and

spatial domains within the epiblast (Hackett and Surani, 2014;

Kojima et al., 2014; Nichols and Smith, 2009; Wu et al., 2015).

Thanks to these and other observations, our understanding of

pluripotency has been greatly broadened in the past decade.

Pluripotency, as we see it today, is no longer a singular property.

The recent discovery of distinct spatiotemporal pluripotent

states has brought us one step closer to grasping the essence

of how the intrinsic developmental program is orchestrated

among ephemeral epiblast cells in preparation for setting up

the whole body plan. Moreover, discrete pluripotent states with

uniquemolecular and functional features have expanded the util-

ity of pluripotent stem cells (PSCs) for both fundamental and clin-

ical research.

In this Perspective, we will provide a brief account of the

distinct pluripotent states identified to date in both rodents and

primates, their molecular features, functional properties, and po-

tential applications. To build upon these insights, we also pro-

pose the concept of xeno-pluripotency, which we define as the

capability of PSCs from one species to enter into the early em-

bryonic developmental program of another species and

contribute to chimera formation. Finally, we summarize previous
work on interspecies chimeras and elaborate on an emerging

application, interspecies chimeric complementation, for regen-

erative medicine applications.

Naive and Primed Pluripotent States
Mouse ESCs (mESCs) were the first pluripotent cell type isolated

from early embryos. In 1981, Evans and Kaufman (1981) and Gail

R. Martin (Martin, 1981) independently reported the successful

establishment of cultured ESC lines from mouse blastocysts.

mESCs were first grown on mitotically inactivated feeder cells

in the presence of serum. Later studies identified LIF and

BMP4 to be sufficient to liberate mESCs from serum and feeders

without compromising their chimeric and germline competency

(Smith et al., 1988; Ying et al., 2003). Further refinements led to

the establishment of the ground state culture: a minimal condi-

tion devoid of extrinsic stimuli and only containing two small

molecule inhibitors (2i): a GSK3 inhibitor, CHIR99021, which ac-

tivates the canonical Wnt pathway and promotes self-renewal,

and a MEK inhibitor, PD0325901, which blocks differentiation

(Ying et al., 2008). 2i culture supports robust derivation, propa-

gation, and pluripotency of mESCs from a variety of genetic

backgrounds, including non-permissive strains, which are resis-

tant to ESCderivation using conventional cultures (Kawase et al.,

1994). More importantly, 2i culture also supports the derivation

of authentic ESCs from rat blastocysts, a feat achieved 27 years

after the initial mESC derivation (Buehr et al., 2008; Li et al.,

2008). These milestone studies of rodent ESCs paved the way

toward the derivation of ESCs from other species, including

humans.

Since the initial reports of mESCs, derivation of ESC lines has

been attempted in several non-rodent species with limited suc-

cess (Chen et al., 1999; Evans et al., 1990). These putative

ESCs could generate tissues representative of all three germ lin-

eages in culture; however, their developmental potential wasn’t

evaluated using in vivo assays. In 1995, the derivation of the first

stable ESC line from a primate, the rhesus macaque, was re-

ported (Thomson et al., 1995), observations which ultimately

led to the successful derivation of ESCs from human blastocysts

(hESCs) (Ludwig et al., 2006; Reubinoff et al., 2000; Thomson

et al., 1998). Despite similar embryonic origins, there are several
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noticeable differences between hESCs and mESCs: (1) the col-

ony morphology of mESCs is ‘‘dome’’ shaped, while hESCs

appear flattened; (2) some signature pluripotent markers differ

between human and mouse ESCs; e.g., hESCs express

SSEA-3 and SSEA-4 instead of SSEA-1, which are expressed

by mESCs; and (3) unlike mESCs, hESCs are sensitive to sin-

gle-cell dissociation and thus need to be passaged as small

clumps. Signaling pathways involved in the maintenance of the

human andmouse ESCpluripotency programs are also different:

instead of LIF/BMP4, hESCs are dependent on FGF/TGFb

signaling pathways for their maintenance in an undifferentiated

state (Vallier et al., 2005). These differences were initially attrib-

uted to the divergent pre-implantation developmental programs

between primate and rodent. This notion, however, was chal-

lenged when another pluripotent cell line designated as epiblast

stem cells (EpiSCs) was derived from the post-implantation

mouse epiblast (Brons et al., 2007; Tesar et al., 2007). EpiSCs

exhibit features resembling the salient characteristics of hESCs

including colony morphology, low single-cell cloning efficiency,

and signaling dependency, among others. Notably, like hESCs,

EpiSCs could also be obtained directly from pre-implantation

blastocysts (Najm et al., 2011). The similarities shared between

hESCs and EpiSCs suggest that, during derivation, isolated hu-

man inner cell mass (ICM) likely continued on their develop-

mental trajectory in culture to a developmentally more advanced

state and acquired an EpiSC-like identity. In support of this

notion, Sutter and colleagues identified a transient post-ICM in-

termediate (PICMI) during the transition from human ICM to

ESCs in culture. PICMI displays features characteristic of the

post-implantation epiblast, such as X chromosome inactivation

and high expression of genes of the NODAL/ACTIVIN signaling

pathway (O’Leary et al., 2012).

These and other differences between pluripotent mESCs and

EpiSCs led to the realization of the existence of distinct pluripo-

tent states in vitro (Nichols and Smith, 2009). In a way these

in vitro states are reminiscent of the pluripotency continuum,

which exists within a short time window during early embryogen-

esis (Solter et al., 1970; Stevens, 1970). mESCs resemble early

epiblasts from pre-/peri- implantation embryos and thus exist

in a developmentally earlier or more ‘‘naive’’ state. On the other

hand, EpiSCs were captured and stabilized from egg cylinder

epiblast cells, and thus were exposed to inductive signals

emanating from surrounding tissues, and consequently, are

instructively specified or ‘‘primed’’ for differentiation. The

concept of naive and primed pluripotent states allows distin-

guishing in vitro cultured mESCs and EpiSCs through develop-

mental timing and helps us gain novel insights into the molecular

intricacies underlying developmental regulation of pluripotency

in vivo.

Single-cell analyses demonstrated that mESCs most closely

resemble naive epiblasts of mature E4.5 blastocysts (Boroviak

et al., 2014; Martello and Smith, 2014). Although EpiSCs could

be isolated from pre-gastrulation (E5.5) to late-bud (E8.25)

-stage embryos, they display gene expression profiles more

similar to epiblasts of late-gastrula-stage embryos (Kojima

et al., 2014), suggesting that FGF2/TGFb signaling corralled

post-implantation epiblasts into self-renewal at this stage. These

findings helped pinpoint the in vivo counterparts of mESCs and

EpiSCs and confirmed their existence in two temporally distinct
510 Cell Stem Cell 17, November 5, 2015 ª2015 Elsevier Inc.
pluripotent states. Apart from their molecular differences, naive

mESCs and primed EpiSCs also differ in their timing ability to

reenter early embryo development. After being injected into

pre-implantation embryos, mESCs could colonize the blastocyst

ICMs and contribute to chimera formation. EpiSCs, however,

were inefficient in being integrated into blastocyst ICMs. Inter-

estingly, chimeric competency of EpiSCs could be robustly

demonstrated after their grafting into post-implantation E7.5 epi-

blasts followed by in vitro whole-embryo culture (Huang et al.,

2012). In contrast, grafted mESCs did not proliferate properly

and failed to differentiate in post-implantation E7.5 epiblasts.

Also, when grafted to embryos of a later developmental stage

(E8.5), by which time pluripotency has been lost, EpiSCs could

not integrate, proliferate, and differentiate. Overall, and in agree-

ment with transcriptomic studies, these observations helped

establish a functional equivalency between mESCs and naive

epiblasts as well as mEpiSCs and late-gastrula-stage epiblasts.

They also highlighted how matching developmental timing is a

key factor for PSCs to colonize and integrate into the developing

embryo.

Conventional hESCs are also classified as primed PSCs.

Although similar, hESCs do exhibit molecular signatures distinct

from EpiSCs (Chia et al., 2010) and after being grafted into E7.5

mouse epiblasts, unlike mEpiSCs, hESCs did not survive for an

extended period of time and failed to proliferate and differentiate

(Wu et al., 2015). This may suggest species differences or they

may represent different types of primed pluripotent states. It is

worth taking into consideration that differences in genetic con-

stituents, as well as post-implantation epiblast morphogenesis

in humans (flattened embryonic disc) and mice (cup-shaped

egg cylinder), may have allowed stabilization of distinct popula-

tions of epiblast cells from different developmental stages upon

exposure to FGF2/TGFb signaling in vitro. In line with this idea,

Bernemann et al. (2011) revealed that EpiSC lines from different

genetic backgrounds displayed features of distinct develop-

mental states. Due to ethical considerations, the exact develop-

mental potential of primed hESCs could not be functionally

evaluated using blastocyst chimeric formation. A supportive

argument for the chimeric-incompetent status of hESCs was

raised by Tachibana et al. (2012) after they demonstrated that

rhesus macaque ESCs propagated in hESC culture could not

colonize rhesus blastocysts and failed in contributing to chimera

formation. Of note is that rhesus ICM explants also failed in their

chimeric contribution capability, but instead could form separate

viable fetuses, presumably due to the formation of independent

hypoblast layers that separated donor and host ICMs. It is thus

unclear from this experiment the relationship between rhesus

ESCs and the in vivo ICM. For conceptual as well as for practical

considerations, finding conditions that can stabilize human

PSCs (hPSCs) in a naive state of pluripotency similar to that of

mESCs is critical (Table 1). It will enrich our understanding of em-

bryonic pluripotency across evolutionarily divergent species, as

well as offer an attractive source of PSCs able to overcome

several practical barriers of conventional primed hESCs,

including low cloning efficiency, limited scalability, and putatively

less amenability for multilineage differentiation.

The first successful attempt at achieving a naive state in

hPSCs relied on continued transgene expression where cells

restored LIF responsiveness and could be propagated in mouse
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ground state culture (2i) (Hanna et al., 2010). However, these

cells could not be maintained long-term independent of trans-

gene expression, suggesting that the achieved state was likely

synthetic in nature. A wave of recent reports have claimed the

stabilization of transgene-free naive-like hPSCs (Chan et al.,

2013; Duggal et al., 2015; Gafni et al., 2013; Takashima et al.,

2014; Theunissen et al., 2014; Valamehr et al., 2014; Ware

et al., 2014). Features of mESCs were observed in some of these

naive-like hPSCs, including colony morphology, expression of

naive-related genes, high cloning efficiency, LIF dependency,

and epigenetic and metabolic signatures. It is worth noting that

different human naive cultures vary considerably and many of

them still retain factors that activate FGF/TGFb signaling path-

ways, which are indispensable for maintaining primed pluripo-

tency in mice. This can potentially be attributed to discrepancies

in the ICM’s responses to FGF and NODAL/ACTIVIN signaling

between mouse and human (Blakeley et al., 2015; Kuijk et al.,

2012; Roode et al., 2012). Also, in many cases single-cell

passaging of the naive-like hPSCswas assisted by ROCK kinase

inhibition, a well-adopted strategy to boost the poor cloning ef-

ficiency of primed hPSCs. Thus, it remains unclear whether

these human naive PSCs are the true counterpart of mESCs.

An encouraging study recently claimed a modest chimeric

contribution with naive cynomolgus monkey ESCs converted

from primed cells using a modified human naive culture (Chen

et al., 2015). Although further analyses of live births and germline

contribution are needed to confirm their true naive status, the

possibility of using ESCs for generating chimeric primates is

indeed exciting and may facilitate the generation of non-human

primate (NHP) models (Izpisua Belmonte et al., 2015). Interest-

ingly, Huang et al. (2014) recently took a systems biology

approach and performed weighted gene co-expression network

analysis (WGCNA) of human andmousePSCs.WGCNA revealed

that unlikemurinePSCs, hPSCsexhibit a highdegreeof variation,

likely resulting from distinct culture conditions used by different

studies. More importantly, it was found that naive gene networks

between human and mouse are more divergent than expected

and both showed resemblance to blastocysts of their own spe-

cies origin. This suggests that species-specific pre-implantation

development strategiesmight have imposeddifferent featureson

naive pluripotency.

With the recognition of naive and primed pluripotent states,

our understanding of pluripotency has been temporally enriched.

The ability to capture pluripotency in culture from different time

points provides us with invaluable tools to model early develop-

mental processes in vitro. State transitions between naive and

primed conferred by genetic and epigenetic forces have facili-

tated our molecular understanding of how embryonic pluripo-

tency is harnessed for ensuing proper lineage specification.

Alternative Temporally Distinct Pluripotent States
In addition to naive and primed states, a number of studies have

suggested the existence of other temporally distinct states

(Figure 1 and Table 1).

Post-implantation epiblasts between E5.5 and E6.25 are

competent to form primordial germ cells (PGCs) under inductive

signals from the surrounding extra-embryonic tissues (Ohinata

et al., 2009). PGC competency is largely lost in EpiSCs (Hayashi

and Surani, 2009). A transient cellular state highly similar to the
pre-gastrulating epiblast (designated as epiblast-like cells or

EpiLCs) could be generated from naive ESCs (Hayashi et al.,

2011). Unlike EpiSCs, EpiLCs could be efficiently induced to

a PGC fate, thus constituting an ideal startingmaterial for gaining

molecular insights into PGC specification, the first critical step

of germ cell development (Aramaki et al., 2013; Nakaki et al.,

2013). Moreover, robust induction of PGC-like cells (PGC-LCs)

from EpiLCs enables generation of functional gametes using

mESCs and marks the first step in reconstituting complete

germ cell development in vitro, the Holy Grail in mammalian

germ cell biology (Hayashi et al., 2011, 2012). With the arrival

of naive hESCs, a similar strategy has been adopted for the

induction of human PGC-LCs (Irie et al., 2015). Interestingly,

however, a recent report by Sasaki et al. (2015) demonstrated

highly efficient hPGC-LCs induction directly from primed hiPSCs

through an incipient mesoderm-like state (iMeLCs). This obser-

vation suggests that primed hiPSCs bear a property intermediate

between mouse EpiSCs and EpiLCs. In spite of their advan-

tages for germ cell studies, EpiLCs are transient and not a clono-

genic entity.

In another study, Han et al. (2010) identified two cell popula-

tions within EpiSCs that could be distinguished by GFP signals

driven by the entire 18 kb regulatory region of the Oct4 gene

(GOF18). While it is not fully clear why some EpiSCs do not ex-

press the reporter construct, this probably relates to differential

enhancer usages that can be used empirically to define separate

epiblast states. Interestingly, although the Oct4-GFP+ popula-

tion gradually diminished upon extended culture, they could

readily integrate and contribute to chimera formation, contrary

to Oct4-GFP� cells, upon blastocyst injection. Germline trans-

mission, however, was not observed with Oct4-GFP+ cells.

From this study it was suggested that a transient population

resembling the early-stage epiblast, and able to retain chimeric

competency, may exist within EpiSC cultures (Gardner et al.,

1985). Indeed, a follow-up study from the same group demon-

strated stabilization of this transient Oct4-GFP+ population

with a modified EpiSC culture condition containing FGF4 (Joo

et al., 2014).

Several other reports have also claimed the isolation of

chimeric-competent EpiSCs, a feature normally associated

with naive ESCs. Chang and Li isolated intermediate epiblast

stem cells (IESCs) displaying dual responsiveness to LIF-

STAT3 and ACTIVIN-SMAD2/3 signaling. IESCs could efficiently

incorporate into the ICM, although they altered further normal

embryo development (Chang and Li, 2013). By introducing

CHIR99021, a GSK3 inhibitor that activates the canonical WNT

pathway and one of the components of ground state 2i culture,

into FGF2/Activin (F/A) EpiSC culture medium, Tsukiyama and

Ohinata (2014) obtained intermediate pluripotent stem cells

(INTPSCs) either from naive ESCs or through reprogramming.

Remarkably, after blastocyst injection, INTPSCs contributed

efficiently to chimeras, including the germline. Gene expression

analysis indicated that INTPSCs retain expression of both naive

and primed specific genes, suggestive of an intermediate plurip-

otent state between ESCs and EpiSCs. Whether INTPSCs

correspond to the natural pre-gastrulating epiblast remains un-

explored. Moreover, it is still unknown whether INTPSCs can

be directly stabilized from post-implantation epiblasts. Intrigu-

ingly, Kurek et al. (2015) recently showed that WNT inhibition,
Cell Stem Cell 17, November 5, 2015 ª2015 Elsevier Inc. 511
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Table 1. Summary of the Different Flavors of Mouse and Human PSCs and Their Properties

Species States References Culture Condition Features

Mouse totipotent-like Macfarlan et al., 2012 (2C-like) LIF/Serum transient; OCT4�/NANOG�/

SOX2�; MuERV-L+;

embryonic and extra-embryonic

lineage contributions

Morgani et al., 2013 (Hex+ ESCs) 2ia/LIF transient; single Hex+ ESCs co-

expresses epiblast and extra-

embryonic genes; embryonic and

extra-embryonic lineage

contributions

naive Evans and Kaufman, 1981;

Martin, 1981; Smith et al., 1988;

Ying et al., 2003

Serum; LIF/Bmp4 ‘‘dome’’-shaped colony

morphology; high cloning efficiency;

XaXa; germline chimera

Ying et al., 2008 (ground state) 2i ‘‘dome’’-shaped colony

morphology; high cloning efficiency;

XaXa; germline chimera

intermediate Ohinata et al., 2009 (EpiLCs) FGF2/Activin-A/KSR (1%) transient; high PGC induction

efficiency

Han et al., 2010 (Oct4-GFP+

EpiSCs)

FGF2/Actvin-A transient; high ESC reversion

efficiency; gene expression

resembles early epiblast; chimera

without germline contribution

Joo et al., 2014 (FGF4-EpiSCs) FGF4/Serum XaXi; chimera without germline

contribution

Tsukiyama and Ohinata, 2014

(INTPSCs)

FGF2/Activin-A/CH germline chimera

Kurek et al., 2015 (IWP2-EpiSCs) FGF2/Activin-A/IWP2 high ESC reversion efficiency; gene

expression resembles pre-gastrula

epiblast; chimera without germline

contribution

Kim et al., 2013 (CX-EpiSCs) CH/XAV/Serum high cloning efficiency; self-renewal

depends on stabilized cytoplasmic

b-catenin activity

Chang and Li, 2013 (IESCs) Actvin-A/Serum dual responsiveness to LIF-Stat3

and Activin-Smad2/3 signaling;

global gene expression intermediate

between ESCs and EpiSCs; chimera

(low contribution and most show

developmental retardation)

primed Brons et al., 2007; Tesar et al.,

2007 (EpiSCs)

FGF2/Actvin-A ‘‘flattened’’ colony morphology;

XaXi; low cloning efficiency; little to

no blastocyst chimera; broad

engraftment to late epiblast

Wu et al., 2015 (rsEpiSCs) FGF2/IWR1/Serum free high cloning efficiency; short

doubling time; XaXi; no blastocyst

chimera; posterior biased

engraftment to late epiblast

Human heightened Yang et al., 2015 transient treatment with

BAP (BMP4, A83-01 and

PD173074)

insensitive to trypsin passage;

express CDX2; sensitive to high

FGF2 concentration; trophoblast

differentiation in absence of BMP4

treatment

naive Hanna et al., 2010 2i/LIF + DOX

PD/CH/LIF/FK

transgenes-dependent: Klf4/Oct4 or

Klf4/Klf2; ‘‘dome’’-shaped colony

morphology; XaXa; LIF-dependent

and TGF b/Actvin independent

(Continued on next page)
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Table 1. Continued

Species States References Culture Condition Features

Gafni et al., 2013 NHSMb high cloning efficiency; shortened

doubling time; XaXa; DNA

hypomethylation; de novo derivation

from human blastocyst; blastocyst

interspecies embryonic chimerae

Chan et al., 2013 PD/BIO/DOR/LIF LIF-dependent; coexpression of

GATA6 and NANOG

Ware et al., 2014 PD/CH/FGF2 or

PD/CH/SU/LIF

XaXa; de novo derivation from

human blastocyst (low efficiency);

high cloning efficiency; shortened

doubling time; less matured

mitochondria

Theunissen et al., 2014 5iLAc de novo derivation from human

blastocyst; XaXi; elevated and

homogeneous expression of

NANOG, KLF4, and REX1; reduced

level of H3K27me3; no blastocyst

interspecies embryonic chimera

formation

Wang et al., 2014 PD/CH/LIF/FGF2 HERVH+; XaXa; high cloning

efficiency

Takashima et al., 2014

(reset state)

T2ILGOd self-renew independent of ERK

signaling; DNA hypomethylation;

lower levels of H3K27me3 and

H3K9me3; depletion of TFCP2L1 or

KLF4 collapses the reset state;

mitochondrial activation

Duggal et al., 2015 FGF2/LIF/PD/CH/FK/AA high cloning efficiency; reduced

doubling time; XaXa; DNA

hypomethylation

primed Thomson et al., 1998; Reubinoff

et al., 2000; Ludwig et al., 2006

FGF2/KSR; Serum; mTeSR ‘‘flattened’’ colony; XaXi; low cloning

efficiency; little to no blastocyst or

late epiblast interspecies chimeric

contribution

Wu et al., 2015 (rsESCs) F2/IWR1/Serum free high cloning efficiency; XaXi; late-

epiblast interspecific embryonic

chimera

CH, CHIR99021; KSR, Knockout Serum Replacement; XAV, XAV939; DOX, Doxycyclin; PD; PD0325901; FK, Forskolin; DOR, Dorsomorphin; SU,

SU5402; AA, Ascobic Acid; CX, CHIIR99021 and XAV939.
a2i: CHIR99021 and PD0325901.
bNHSM: LIF, TGFb1, FGF2, ERK1/2i (PD0325901), GSK3bi (CHIR99021), JNKi (SP600125) and p38i (SB203580).
c5iLA: LIF, PD0325901, IM-12, SB590885, WH-4-023, Y-27632, Activin-A.
dT2ILGO: LIF, PD0325901, CHIR99021, Gö6983.
eResults of interspecies embryonic chimera were not reproduced in Theunissen et al.’s 2014 study using either NHSM or 5iLA cultures.
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rather than activation, stabilizes EpiSCs at a pre-gastrula

epiblast state. In this study, a porcupine inhibitor IWP2 that

blocks WNT secretion was used. IWP2-EpiSCs could revert to

naive ESCs with higher efficiency and contribute to chimeric em-

bryo formation. Live chimeras and germline transmission were

not analyzed in this study. These seemingly contradictory obser-

vations can potentially be explained by the intricate role of WNT

signaling in controlling pluripotency. WNT activation promotes

self-renewal of naive ESCs and its inhibition leads to rapid tran-

sition to the primed state (ten Berge et al., 2011). Modulation in

the strength of the Wnt signaling pathway can potentially help

‘‘dial’’ the pluripotency back and forth throughout the early
stages of embryogenesis. Indeed, a combination of a Wnt acti-

vator (CHIR99021) and a Wnt inhibitor (XAV939 or IWR1, but

not IWP2) arrested EpiSCs in a developmental state closer to

ESCs than to EpiSCs grown in conventional F/A culture (Kim

et al., 2013), putatively via a novel cytoplasmic b-catenin activity.

It should also be noted that naive ESCs, particularly under LIF/

Serum culture and primed EpiSCs/hESCs, are heterogeneous

and display sub-states with distinct transcriptional and develop-

mental potentials (Hough et al., 2014; Kumar et al., 2014; Tsakir-

idis et al., 2014). Therefore, other yet-to-be-identified intermedi-

ate states that sit between mESCs and EpiSCs might be

uncovered.
Cell Stem Cell 17, November 5, 2015 ª2015 Elsevier Inc. 513
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Figure 1. Spatiotemporally Distinct PSC States
PSCs showing different timing and spatial properties have been isolated from the early mouse embryos. Top: illustrations of mouse embryos at different stages of
early development. Embryonic cells with totipotent or pluripotent potentials are indicated. Bottom: in vitro cultured cells showing functional features resembling
in vivo embryonic cells and categorized into different pluripotent states accordingly. Cell morphologies of mESCs, EpiSCs, and rsEpiSCs are shown.
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In addition to intermediate states, totipotent-like states with

the potential to contribute to both embryonic and extra-embry-

onic lineages have been described. In one study, Macfarlan

et al. (2012) identified a rare transient population of mESCs

with embryonic two-cell (2C) -like features that could be identi-

fied by MERV-L retrotransponson expression. These 2C-like

cells lack some key pluripotency proteins, including OCT4,

SOX2, and NANOG, and surprisingly, they acquired the develop-

mental potential reminiscent of totipotency. Remarkably, nearly

all ESCs cycle in and out of this totipotent-like state, a process

partially controlled by histone-modifying enzymes. Induction of

2C-like cells could be facilitated by chromatin reprogramming

through downregulation of the chromatin-assembly activity of

CAF-1 (Ishiuchi et al., 2015). Most recently, however, an in-depth

single-cell RNA-sequencing analysis showed that 2C-like cells

are globally more similar to blastocysts than to two-cell-stage

embryonic cells (Kolodziejczyk et al., 2015). Thus, the true iden-

tity of 2C-like cells remains unclear. In a separate study, Morgani

et al. (2013) found a Hex-positive (Hex is an extra-embryonic

endoderm marker) fraction within ground state mESC cultures

that not only co-expressed epiblast and extra-embryonic marker

genes, but also contributed to both lineages in chimeric em-

bryos. In addition to these rodent studies, hPSCs with height-

ened potency have been also described with transient BMP4

treatment; however, their developmental potential remains

elusive (Yang et al., 2015). The temporal identities of these toti-
514 Cell Stem Cell 17, November 5, 2015 ª2015 Elsevier Inc.
potent-like states likely precede that of naive ESCs in develop-

mental terms. It remains unknown whether totipotent stem cells

or cells with expanded developmental potentials can be stabi-

lized in culture.

The experimental accessibility of most developmental stages

of mouse embryogenesis has made derivation of pluripotent

cell types from different time points possible. Also, recent

studies have demonstrated that the derived cells are highly plas-

tic and can interconvert in response to extracellular signals (Pera

and Tam, 2010). Although discrete states could be stabilized

in vitro, it should be noted that animal development is a contin-

uous process and temporal states captured in vitro likely only

represent a small group of cells frozen in time in specific cell cul-

ture environments. Future investigations of PSCs with different

timestamps will help delineate the regulatory programs underly-

ing ontogenesis in vivo.

Spatially Distinct Pluripotent States
Animal development is a dynamic process that not only moves

forward in time but also expands in space. Cells at different topo-

logical locations are exposed to diverse external stimuli that,

together with intrinsic cellular cues, lead to specific fate lineage

commitments in the developing embryo. Embryonic cells with

distinct spatial attributes first emerge after the compaction of

eight-cell embryos where an outer polarized epithelial monolayer

encircles a group of inner apolar cells (Stephenson et al., 2012).
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This spatial allocation of cells coincides with the first lineage

specification: outside cells are committed to form the trophecto-

derm (TE) and the inside cells become the ICM of the blastocyst.

The ICM further segregates into epiblast and primitive endoderm

(PE) lineages with PE facing the blastocoel and epiblast apposed

to the polar trophectoderm. Following implantation into the uter-

ine tissue, the blastocyst goes through a rapid phase of prolifer-

ation and morphogenesis into an elongated cup-like structure,

the egg cylinder. Further into post-implantation development,

the distally positioned epiblast undergoes cavitation and reorga-

nization into an epithelium surrounding a central pro-amniotic

cavity. These morphogenetic events are accompanied by

regionalization and embryonic patterning in preparation for the

subsequent establishment of the whole body plan. It is conceiv-

able that, influenced by local cues, individual epiblast cells bear

distinctive features reflective of their spatial origins.

An in-depth analysis of the grafting outcomes of EpiSCs has

led to the realization that they more readily colonize the anterior

primitive streak of the late-streak-stage embryo (Kojima et al.,

2014). The spatial property of pluripotency became evident after

the recent discovery of a novel class of EpiSCs with distinct

spatial characteristics (Wu et al., 2015). These newly derived

EpiSCswere named region-selective EpiSCs or rsEpiSCs largely

based on their unique ability to selectively engraft into the poste-

rior proximal part of post-implantation epiblast, distinct from

conventional EpiSCs. Following in vitro whole-embryo culture,

grafted rsEpiSCs were able to further proliferate and differentiate

into the three primary germ lineages. In line with this, global tran-

scriptomic comparison of cultured rsEpiSCs with four dissected

regions (anterior-proximal, anterior-distal, posterior-proximal,

and posterior-distal) of the post-implantation epiblasts revealed

a higher correlation between rsEpiSCs with posterior-proximal

epiblast than other epiblast quadrants. Distinct grafting out-

comes and global transcriptome profiles between EpiSCs and

rsEpiSCs allude to the existence of spatially distinct pluripotent

states. Likely other spatially unique pluripotent states may exist

in the post-implantation epiblast, and future studies into this di-

rection will certainly help enrich our understanding of epiblast

patterning and early lineages commitment. In addition to mouse,

rsPSCs have also been obtained from human and rhesus PSCs.

While functional evaluation of human rsPSCs using a post-im-

plantation human epiblast is not possible, grafting human

rsPSCs into a mouse embryo surprisingly resulted in the robust

integration, proliferation, and differentiation of human cells in

the posterior epiblast, a similar outcome to mouse rsEpiSCs.

This suggests that epiblast cells across different species could

be spatiotemporally synchronized in a way that allow human

and mouse cells to intermix during early development.

Xeno-Pluripotency and Interspecies Chimeras
Interspecies approaches, such as mammalian hybrids and het-

erokaryons (Blau et al., 1983), have provided key knowledge

that would have been otherwise impossible to obtain by tradi-

tional means. Interspecies chimera formation is probably the

only ethically acceptable way to study the developmental poten-

tial of hPSCs in an in vivo context. Primed hESCs were first eval-

uated for their xeno-developmental potential following injection

into mouse blastocysts and embryo transfer (James et al.,

2006). In their study, Brivanlou and colleagues found that the
majority of human-mouse embryonic chimeras showed develop-

mental retardation and human cells were rarely found inmorpho-

logically normal embryos. A similar finding was reported from a

study using NHP ESCs (Simerly et al., 2011). The presumed

EpiSC-like identity led to the test for grafting hESCs to the

post-implantation mouse epiblast, a permissive environment

for EpiSCs to thrive. Surprisingly, however, hESCs were found

incompatible with the host tissue (Wu et al., 2015). These ob-

servations indicate that primate PSCs grown in conventional

F/A-based media are inefficient in contributing to normal devel-

opment of early mouse embryos (Table 2).

With the advent of naive-like primate PSCs, enthusiasm was

rekindled for examining their interspecies chimeric competency,

or what we refer to here as xeno-pluripotency. The outcomes,

however, are inconsistent. Gafni et al. (2013) reported robust hu-

man-mouse embryonic chimera formation using naive cells

cultured in NHEM medium. In contrast, Theunissen et al. (2014)

did not observe any chimera formation among 860 injected em-

bryos using naive-like hESCs derived in their own 5iLA medium,

or in 436 injected embryos using NHEM cultured naive-like

hESCs previously reported by Gafni et al. To add to the puzzle,

using yet another set of naive culture condition (4i/L/b), Fang

et al. (2014) demonstrated that naive rhesus iPSCs were able

to generate rhesus-mouse chimeric embryos (Table 2). Despite

these seemingly contradicting results, a common observation

that can be drawn from these studies is that naive-like primate

PSCs are more efficient than primed cells in integrating into the

ICM of mouse blastocysts, observations which are supported

by a couple of other studies using reset naive cells (Masaki

et al., 2015; Takashima et al., 2014). It remains an unresolved

issue whether current naive-like hPSCs are able to cross the

xeno-barrier and efficiently contribute to the later developmental

stages of another species. While all of the mentioned studies

used mouse as the host species, since the evolutionary distance

between human and mouse is about 90 million years (http://

www.timetree.org), it will be interesting to test the develop-

mental potential of naive-like hPSCs in animal hosts that are

evolutionarily closer to humans.

Notwithstanding naivety, the xeno-pluripotent property of

primed human rsPSCs to differentiate into all three embryonic

germ lineages in an interspecies chimeric embryo opens a win-

dow of opportunity to study early human developmental events

and understand human versus mouse developmental differ-

ences that are otherwise inaccessible (Table 2). With further

improvement of embryo culture, some remaining questions

could be properly addressed. For example, it remains unknown

to what extent human rsPSCs can differentiate in a developing

mouse embryo. Additionally, it will be important to test whether

such differentiation is efficient enough to enable robust examina-

tion of developmental differences. Alternatively, grafting rsPSCs

in a more accessible model system, such as the developing

chick embryo, and analyzing their fate at desired developmental

stages could potentially help further reveal the xeno-develop-

mental potential of human rsPSCs (Izpisúa-Belmonte et al.,

1992, 1993; Stern, 2005).

As far as interspecies chimeras are concerned, and due to a

lack of authentic ESCs, earlier work has relied on mixing early

embryos or isolated embryonic cells from two different species

for generating chimeras (Table 2). Initial trials withMus musculus
Cell Stem Cell 17, November 5, 2015 ª2015 Elsevier Inc. 515
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Table 2. Summary of the Current State of Research on Interspecies Chimeras

Species

Evolutionary

Distancea Method Surrogate Outcome Reference

Mus musculus,

Myodes glareolus

30.4 Mya morula-morula

aggregation

Mus musculus majority of embryos were

abnormal; two normal-

looking embryos at E9

and E10 with low

chimerism; no live

embryos beyond E11

Mystkowska, 1975

Mus musculus,

Mus caroli

6.5 Mya blastocyst injection

of ICMs

Mus musculus live-born chimeras

developed to adulthood

Rossant and Frels, 1980

Ovis aries, Capra

hircus

9.9 Mya aggregation of four-cell

or eight-cell embryos;

blastocyst injection

of ICMs

Ovis aries or

Capra hircus

live-born chimeras

developed to adulthood

Fehilly et al., 1984

Bos Taurus,

Bos indicus

0.5 Mya aggregation of morulae,

compact morulae or

early blastocyst

demi-embryos

Bos Taurus or

Bos indicus

live-born chimeras

developed to adulthood

Williams et al., 1990

Mus musculus,

Rattus

17.9 Mya morula-morula

aggregation; morula-ICM

aggregation; blastocysts

injection of ICMs

Mus musculus chimeric blastocysts and

embryonic chimeras; no

viable live-born chimeras

Mulnard, 1973; Stern,

1973; Zeilmaker, 1973;

Gardner and Johnson,

1973; Rossant, 1976

blastocyst injection of

rat PSCs

Mus musculus live-born chimeras

developed to adulthood

Kobayashi et al., 2010;

Isotani et al., 2011

blastocyst injection

of mouse PSCs

Rattus live-born chimeras

developed to adulthood

Kobayashi et al., 2010

Mus musculus,

Apodemus sylvaticus

11.4 Mya blastocyst injection of

apodemus ESCs

Mus musculus live-born chimeras

developed to adulthood

Xiang et al., 2008

Mus musculus,

Homo sapiens

90.1 Mya blastocyst injection

of hESCs

Mus musculus developmental

retardation; poor and low

efficient contribution to

normal embryos

James et al., 2006

morula injection of

naive hPSCs

Mus musculus interspecies chimeric

embryos at E8.5–E10.5

(Gafni et al.);

no chimeric contribution

in recovered E10.5

embryos (Theunissen

et al.)

Gafni et al., 2013;

Theunissen et al., 2014

epiblast grafting of

human rsESCs

Mus musculus chimeric contribution

after grafting to posterior

part of E7.5 mouse

epiblast followed by 36 hr

in vitro embryo culture

Wu et al., 2015

Mus musculus,

Macaca mulatta

90.1 Mya eight-cell or blastocyst

injection of rhesus naive

iPSCs

Mus musculus interspecies chimeric

embryos at E10.5

and E16

Fang et al., 2014

ahttp://www.timetree.org.
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(mouse) -Rattus (rat) (evolutionary distance: 17.9 Mya) (Gardner

and Johnson, 1973; Rossant, 1976; Stern, 1973; Zeilmaker,

1973) and mouse-Myodes glareolus (bank vole) (evolutionary

distance: 30.4 Mya) (Mystkowska, 1975) mostly yielded non-

viable embryos. In 1980 Rossant and Frels reported the first

interspecies chimeras undergoing normal development in mam-

mals (Rossant and Frels, 1980). In this study they used two ro-

dent species: Mus musculus and Mus caroli (ryukyu mouse),

species that are closely related with an evolutionary distance
516 Cell Stem Cell 17, November 5, 2015 ª2015 Elsevier Inc.
of only about 6.5 Mya. Since then, live chimeras have been

generated between Ovis aries (sheep) and Capra hircus (goat),

9.9 Mya apart (Fehilly et al., 1984); and Bos Taurus (cow) and

Bos indicus (zebu), 0.5 Mya apart (Williams et al., 1990). Of

note is that the pairs of species used in these studies are evolu-

tionarily close in distance, sharing more than 97% of their

genomic sequences. These early studies led to the conclusion

that irreconcilable differences in the course of embryogenesis

precluded formation of viable interspecies chimeras from

http://www.timetree.org
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evolutionarily divergent species. While this assumption is likely

true, the question of how much evolutionary divergence could

be tolerated by pluripotent cells from two species was recently

challenged by the successful generation of live chimeras be-

tween Mus musculus and Apodemus sylvaticus (wood mouse),

which diverged about 11.4 million years ago, a feat achieved

with the use of naive ESCs (Xiang et al., 2008). In addition, live

mouse-rat chimeras were also obtained via injection of naive

mouse or rat PSCs into host rat or mouse blastocysts, respec-

tively, following embryo transfer to surrogates of the host spe-

cies (Kobayashi et al., 2010). These studies suggest that

in vitro cultured rodent PSCs may acquire new features that

allow them to cross xeno-boundaries that are normally not

possible by mixing in vivo embryonic cells. It will be interesting

to see whether this property of cultured PSCs can be further har-

nessed for creating interspecies chimeras of more divergent

evolutionary origins, such as the mouse and bank vole. Also,

de novo derivation of other xeno-pluripotent stem cells (xPSCs)

or artificial pluripotent states created through cellular reprogram-

ing (Tonge et al., 2014; Wu and Izpisua Belmonte, 2014) will offer

further important evolutionary insights.

Engineering-minded approaches may help increase the effi-

ciency and extend the degree of PSCs for crossing xeno-bound-

aries during embryonic development. These approaches will

require a deeper understanding of the molecular and cellular

events unleashed by interspecies cell mixing in early develop-

ment. Two key processes are potentially involved, heterochrony

and cell competition. Heterochrony, a change in the relative

timing or rate of a developmental process, may account for

many of the evolutionary divergences observed. Examining het-

erochrony at genetic, molecular, and cellular levels will help us

understand how development is modified to produce evolu-

tionary changes and explain the inefficiency observed with the

formation of interspecies chimeras (Smith, 2003). Cell-cell

competition, the process of eliminating unfit or unwanted cells,

is gaining increasing recognition as an evolutionarily conserved

mechanism for development, tissue homeostasis, organ size

control, and stem cell maintenance (Claverı́a et al., 2013; John-

ston, 2009). Cell competition was first studied in Drosophila

where cells carrying a Minute mutation were outcompeted by

wild-type cells with metabolic advantages (Morata and Ripoll,

1975). Later studies in mammalian systems revealed that this

process is universal and highly conserved (Amoyel and Bach,

2014). In addition to the classical model, myc-induced super-

competition constitutes another mode of cell competition

whereby cells with higher Myc expression outcompete neigh-

boring wild-type cells (Amoyel and Bach, 2014). Both types of

cell competition have thus far only been examined in the intra-

specific setting and their roles in interspecies chimera formation

await to be explored. Interestingly, by using a genome-wide

cheater screening, Zwaka and colleagues identified a network

of genes whose downregulation confers embryonic cells with

the ability to out-compete wild-type cells in development, a

feature reminiscent of myc-driven super-competition (Dejosez

et al., 2013). Another form of cell competition that is relevant in

an interspecific context is cell cycle differences. Faster dividing

cells from one species will likely dominate and out-compete

slower dividing cells from the other species during development,

affecting the degree of chimerism. Armed with this mechanistic
information, synthetic biology approaches to program mamma-

lian cell behavior (Lienert et al., 2014) or modulation of cell-cell

competition during early development (Claverı́a et al., 2013)

may expand the repertoire of viable interspecies chimeras and

offer invaluable insights into animal development in an evolu-

tionary context.

The generation of human-animal chimeras, if achieved, will

offer tremendous advantages for regenerative medicine. One

possible application is in vivo drug screening. The current ap-

proaches for drug development include in vitro screening, in vivo

animal models, and eventually multiphase clinical trials in hu-

mans. For in vitro screening patient samples and immortalized

cell lines are conventionally used. Compound screening using

patient samples is limited by their availability and expansion in

culture. Alternatively, immortalized cell lines provide an unlimited

number of cells but their use is often complicated by genetic and

metabolic abnormalities introduced by immortalization. In vivo

transgenic mouse models have been widely adopted for

modeling human diseases and consequently serve as ‘‘in vivo’’

drug screening platforms. However, there are considerable

anatomical, physiological, and behavioral differences between

mice and humans that limit the degree to which insights derived

from the mouse models can be applied to understanding human

biology. The drawback of using animal models has been under-

scored by the failure of translating several successful preclinical

animal tests into human clinical trials. Interspecies chimeras

draw strength from both in vitro human-cell-based screening

and in vivo animal models and hold the potential to be a superior

preclinical testing platform for more accurate prediction of clin-

ical outcomes.

Another future therapeutic application is the potential to obtain

more mature and functional cells, tissues, and even organs from

hPSCs in an in vivo environment. Despite the enormous potential

that has been unleashed by pluripotent hESCs and hiPSCs, cur-

rent in vitro strategies for differentiation to obtain functional and

mature cell types for transplantation have been met with several

major limitations: (1) only limited immature cell types of fetal or

neonatal origin can be produced (Hrvatin et al., 2014) and in

most cases are unsuitable for transplantation (Wu and Hoched-

linger, 2011); (2) differentiation efficiencies vary across cell lines

and often necessitate laborious optimization (Osafune et al.,

2008); (3) differentiating cultures often contain undifferentiated

pluripotent fractions that pose tumor risks; (4) large-scale pro-

duction to meet the clinical demand remains challenging; and

(5) we are still far from generating highly complex tissues and or-

gans in vitro (Lancaster and Knoblich, 2014). Differentiating

hPSCs through the normal course of embryo development in

an in vivo environment of an animal host offers potential solutions

to some of these challenges. Stochastic contribution of donor

PSCs in chimera generation, however, is not ideal for organ gen-

eration, where minimal host cell contamination is imperative.

Interspecies Chimeric Complementation
Throughout evolution, nature has evolved a sophisticated and

robust system to generate functional tissues and organs during

the normal course of embryo development. The intrinsic genetic

program works seamlessly with extrinsic developmental niches

in a highly regulated spatiotemporal manner to enable embry-

onic cells to commit to specific cell lineages and be organized
Cell Stem Cell 17, November 5, 2015 ª2015 Elsevier Inc. 517
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into higher-order tissue architectures. A better understanding of

these developmental principles has been possible thanks to the

powerful combination of gene-targeting technologies with germ-

line competent ESCs for the generation of genome-edited rodent

models. These and other technologies have provided unprece-

dented insights into how specific genetic and epigenetic factors

orchestrate organismal embryonic development. Alterations in

the expression of these factors during embryonic development,

and despite the existence of an intact extrinsic embryonic niche,

leads to tissue and organ impairment, generating in some cases

embryos lacking entire cell lineages and/or organs. To name a

few: homozygous deletion of the Pdx1 gene in mice disables

the pancreatic developmental program and results in the gener-

ation of apancreatic mice that will die soon after birth (Offield

et al., 1996), mouse embryos homozygous for the Lhx1-null

allele lack kidney development, and targeted disruption of the

Nkx2.5 gene in mice leads to embryonic lethality around E10.5

with retarded cardiac development (Lyons et al., 1995).

By genetically disabling organogenesis, the extrinsic develop-

mental niches become ‘‘empty’’ due to the inability of gene-

altered progenitors to populate the embryonic niches. Donor

wild-type PSCs can then be used for the generation of chimeric

animals and to ‘‘fill’’ these empty developmental niches. A

pioneer technique, blastocyst complementation (named so

because donor cells were introduced to the host at the blasto-

cyst stage), was introduced by Alt and colleagues in 1993

(Chen et al., 1993) when they demonstrated that wild-type

mouse ESCs could colonize Rag2�/� mouse blastocysts and

generated normal T and B lymphocytes exclusively of donor

origin. For cells other than lymphocytes, Wu et al. (2002) em-

ployed Hprt-deficient blastocyst complementation to derive em-

bryonic fibroblasts from donor mutant ESCs without a selection

marker. This approach is particularly useful for mutations in

donor ESCs that lead to early embryonic lethality. In addition

to cells, organ complementation was first attempted by Douglas

Melton and colleagues in 2007 (Stanger et al., 2007). In this study

they used wild-type mouse ESCs to complement Pdx1-deficient

mouse blastocysts. As a result, the entire pancreatic epithelium

was derived from the donor ESCs. Interestingly, in the same

study, an alternative complementation approach in which condi-

tional progenitor cell ablation based on diphtheria toxin A (DTA)

was used to eliminate PDX1+ pancreatic or LAP+ (liver-enriched

transcriptional activator) hepatic progenitors during develop-

ment and donor ESCs were able to successfully complement

these progenitor deficiencies. For liver, another study by, Espejel

et al. (2010) complemented Fah-deficient blastocysts with wild-

type iPSCs to demonstrate that iPSCs could differentiate into he-

patocytes independent of cell fusion. DTA-based cell ablation

has been used most recently to eliminate NKX2.5+ cardiac pro-

genitors followed by introduction of wild-type ESCs. These wild-

type ESCs were able to successfully compensate for the loss of

progenitors in the developing heart (Sturzu et al., 2015).

Interspecies blastocyst complementation was first suggested

in a study reporting the generation of live mouse-wood mouse

chimeras (Xiang et al., 2008). It was not until 2010 that a mile-

stone paper from Nakauchi’s group (Kobayashi et al., 2010)

demonstrated this potential between mouse and rat. In their

study rat PSCs were used to complement mouse Pdx1 null blas-

tocysts and as a result, an entire rat pancreatic epithelium could
518 Cell Stem Cell 17, November 5, 2015 ª2015 Elsevier Inc.
be generated in the mouse host. Afterward, Isotani et al. (2011)

successfully complemented blastocysts from nude mice lacking

a thymus with rat ESCs and generated a functional xenogenic rat

thymus. Usui et al. (2012) tried complementing Sal1 null blasto-

cysts to generate kidneys. When mouse PSCs were used, the

kidney was successfully generated via blastocyst complementa-

tion; however, rat iPSCs failed in this context, suggesting that

key molecules involved in the interaction between mesenchyme

and the ureteric buds during kidney development might not be

conserved between mice and rats.

Despite only two successful reports to date, the interspecies

blastocyst complementation platform has raised an intriguing

possibility for the generation of functional human cells/tissues/

organs in animal hosts. Due to its resemblance to humans in

anatomy, physiology, organ size, and cell cycle characteristics,

the pig could be a possible candidate.

With the recent completion of swine genome sequencing

(Groenen et al., 2012), together with the successful development

of SCNT technologies (Lai et al., 2002; Park et al., 2001), the pig

has emerged as one of the most popular large animal models in

biomedical research (Prather et al., 2013). This has been further

enhanced by the advancement of genetic engineering technolo-

gies such as homologous recombination (Lai et al., 2002), zinc

finger nucleases (ZFNs) (Hauschild et al., 2011; Whyte and

Prather, 2012), transcription-activator-like effector nuclease

(TALEN) (Carlson et al., 2012), and the clustered regularly inter-

spaced short palindromic repeats (CRISPR) with RNA-guided

nucleases, such as Cas9 (CRISPR-Cas9) (Hai et al., 2014;

Wang et al., 2015; Whitworth et al., 2014). The combination of

SCNT with genetically modified pig somatic cells has produced

a number of valuable porcine models of human diseases,

including diabetes (Renner et al., 2010; Umeyama et al., 2009),

cystic fibrosis (Rogers et al., 2008), retinitis pigmentosa (Petters

et al., 1997; Ross et al., 2012), spinal muscular atrophy (Lorson

et al., 2011), and Alzheimer’s disease (Kragh et al., 2009). Intra-

specific blastocyst complementation in the pig has also been

achieved by Nakauchi and colleagues (Matsunari et al., 2013).

In their study, the authors cloned fibroblasts overexpressing

HES1 under the Pdx1 promoter. Pdx1-Hes1 transgene expres-

sion suppressed the pancreatic program, thus leading to the cre-

ation of a pancreatogenesis-disabled pig blastocyst. Since

chimeric-competent pig PSCs were not available, the authors

cloned fibroblasts expressing the huKO fluorescent protein

and used blastomeres isolated from huKO embryos to comple-

ment the Pdx1-Hes1 blastocysts. As a result, huKO blastomeres

were able to contribute to chimera formation and generated an

entire huKO+ pancreatic epithelium. Moreover, the chimeric

pigs generated by complementation were able to grow into

adulthood with a functional pancreas.

Despite the success, it is difficult to implement SCNT in a stan-

dard laboratory. With the advent of programmable nucleases

including ZFNs, TALENs, and CAS, genome editing has become

more precise and efficient (Doudna and Charpentier, 2014; Gaj

et al., 2013). These nucleases can recognize specific DNA se-

quences and generate double strand breaks (DSBs) at predeter-

mined genomic loci. Once DSBs are created two major cellular

DSB repair mechanisms (non-homologous end joining [NHEJ]

and homology-directed repair [HDR]) are activated through

which targeted genome modification can be achieved. These
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programmable nucleases not only facilitate genome editing us-

ing cultured cell lines, but also, more importantly, allow direct

genome editing in early embryos for the fast generation of trans-

genic animals. Error-prone NHEJ produces indels in the genome

that will lead to loss-of-function of genes of interest. A NHEJ-

based knockout strategy is highly efficient and thus has been

successfully achieved in a wide variety of species including

mouse, rat, pig, sheep, cow, and NHP (Geurts et al., 2009; Hai

et al., 2014; Hauschild et al., 2011; Niu et al., 2014; Sung et al.,

2013; Wang et al., 2013). Moreover, the CRISPR-Cas9 system

allows multiplex gene editing, which is advantageous for the

generation of multiple-gene knockouts simultaneously. There-

fore, nuclease-mediated one-cell gene editing is potentially a

more accessible approach for editing host embryos for blasto-

cyst complementation.

As mentioned above, it remains unknown which types of

hPSCs can efficiently cross xeno-barriers. Also it should be

pointed out that there is a larger evolutionary distance between

humans and pigs (95 Mya) than between humans and mice

(90.1 Mya). The choice of pigs as hosts for production of human

organs with hPSCs is rather based on organ size, physiology,

ample supply, and their amenability to be raised in a clean envi-

ronment. From a developmental point of view, however, pigs

have features distinct from both humans and mice which may

be advantageous or disadvantageous; for example: (1) the pres-

ence of porcine ICM lasts for a longer time period (about 6–

7 days) compared to that of mice (1 day) and humans (3 days)

(Oestrup et al., 2009). (2) Both human and pig epiblasts assume

a disk-shaped epiblast layer whereas mice develop a cup-

shaped epiblast. (3) Pigs have epitheliochorial placentae, which

are less invasive than haemochorial placentae typical of humans

and mice. To address the key question of whether hPSCs can

cross species barriers and contribute to early pig development,

it is imperative that hPSCs are empirically tested following injec-

tion into early pig embryos and embryo transfer to pseudopreg-

nant sows. Practically speaking this is not trivial and calls for

collaborative efforts with researchers across many disciplines

including embryologists, veterinarians, stem cell biologists,

genome editing experts, clinicians, and bioethicists. Moreover,

pigs may not be the right host, as currently there is lack of infor-

mation regarding how divergent the developmental programs,

cell-cell communications, signaling for lineage specifications,

and allocations are shared between humans and pigs. In addi-

tion to pigs, we also need to consider other animal species

such as sheep (95 Mya), goat (95 Mya), cow (95 Mya), and rabbit

(90.1Mya), among others. Evolutionarily closer NHPs (e.g., com-

mon marmoset, 41.8 Mya; rhesus macaque, 27.3 Mya; Chimp,

6.2 Mya), however, are unlikely to be considered due to practical

and ethical reasons.

In addition to blastocyst complementation, there are other

forms of chimeric complementation (Figure 2): (1) tetraploid

complementation, the most stringent in vivo pluripotency test,

is probably the ultimate chimeric complementation with donor

ESCs contributing to all structures in the fetus (Nagy et al.,

1993). It will be intriguing to know whether this can work in an

interspecies scenario where PSCs from one species can

generate an entire living organism inside the tetraploid embryo

of another species. (2) Since human rsPSCs can be incorporated

and differentiated in the epiblast of gastrula mouse embryos,
interspecies epiblast complementation may help enrich human

cells in early peri-gastrula developmental niches and generate

early human progenitor cells. (3) In utero conceptus complemen-

tation with human lineage progenitors offers an alternative way

to generate human organs in organogenesis-disabled livestock

(Rashid et al., 2014). Previous studies on grafting human primary

cells, or cell derivatives generated from hPSCs, to a wide variety

of experimental animals have paved the way for gaining impor-

tant insights into key parameters—among them, the cellular

and molecular host niche environment, cross-species signaling

interplays, and developmentally permissive spatiotemporal attri-

butes—that are important for successful human cell engrafting

following in utero injection (Fisher et al., 2013; Nicholas et al.,

2013; Si-Tayeb et al., 2010; Zhang et al., 2001).

Ethical Considerations
The isolation of different types of hPSCs and their potential to

contribute to interspecies chimera formation have, on one

hand, opened new avenues to study human biology and unveil

novel regenerative medicine applications; on the other hand,

however, they also unleash new ethical challenges. Human-ani-

mal chimera research involves the transfer of totipotent, pluripo-

tent, ormulti-potent stem cells or their derivatives, into animals in

embryonic, fetal, or postnatal stages of development (Hyun

et al., 2007). According to this definition, teratoma assays, the

grafting of pluripotent hPSCs into immunodeficient animals

(mouse prevalently) to evaluate their in vivo differentiation poten-

tial, can be considered as one type of human-animal chimera

(Lensch et al., 2007). Teratomas are generated heterotopically

and thus pose different ethical issues compared to chimeras

created via mixing cells at the pre-implantation blastocyst stage

of development. Orthotopic human-animal chimeric embryos

generated by integrating human cells into different develop-

mental stages of animal embryos also have different ethical im-

plications and should be evaluated case by case.

From an ethical perspective, three main categories of ortho-

topic human-animal chimera research need to be considered

(Hermerén, 2015; Hyun, 2015). One involves in vitro studies using

early embryos. A case in point is the implantation of human

rsPSCs into isolated early post-implantationmouse embryos fol-

lowed by short-term in vitro culture (Wu et al., 2015). Since with

current technologies the chimeric embryos generated are non-

viable and cannot be carried to term, there are minimal concerns

of animal health andwelfare aswell as ethical issues. The second

involves the generation of in vivo embryonic chimeras. Chimeras

generated with naive hPSCs by Hanna’s group fall into this cate-

gory (Gafni et al., 2013). In their experimental set up, pregnancy

was stopped 10 days into mouse gestation, a period within the

limit allowed for research on human embryos (Hermerén,

2015). Although it is possible that the fetal mouse brain might

have had some degree of human contribution, ethical concerns

are in this case limited. The third category includes in vivo studies

with sentient animals, which raises additional ethical challenges

(Hermerén, 2015). Although no hPSCs have been reported,

multi-potent stem cells and their derivatives are commonly being

injected into live animals including NHPs for evaluation of their

differentiation potential or function (Kriks et al., 2011; Pagliuca

et al., 2014; Zhu et al., 2014). In a study by Goldman and col-

laborators in 2013, mouse forebrain glial cells were replaced
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by human glia (Han et al., 2013). The ‘‘humanized’’ mice showed

elevated cognitive capability with enhanced plasticity and

learning, and thus raised the question of whether moral human-

ization accompanys biological humanization in these chimeras,

a concept not readily accommodated by existing ethical guide-

lines (Hyun, 2015).

Human tissue and organ generation using animal hosts needs

to be approached with the appropriate precautions. Guidelines

on human-animal chimeras put forward by theNational Academy

of Sciences (NAS) (National Research Council, 2005; National

Research Council, 2007) and the International Society for Stem

Cell Research (ISSCR) (http://www.isscr.org/docs/default-source/

hesc-guidelines/isscrhescguidelines2006.pdf) should be strictly

followed. Both guidelines made the following recommendation:

‘‘All research involving the introduction of hES cells into

nonhuman animals at any stage of embryonic, fetal, or postnatal

development should be reviewed by the ESCRO committee.

Particular attention should bepaid to the probable pattern and ef-

fects of differentiation and integration of the human cells into the

nonhuman animal tissues.’’ TheNASand ISSCRalso recommen-
520 Cell Stem Cell 17, November 5, 2015 ª2015 Elsevier Inc.
ded limits on interspecies chimera research involving human

cells. Currently, it is commonly agreed that no hPSCs should be

allowed to be implanted in NHP embryos and that human-animal

chimeras should not be allowed to breed. Current NIH funding

guidelines follow these recommendations and prohibit experi-

ments on breeding human-animal chimeras and mixing hPSCs

with NHP embryos. These recommendations, however, do not

preclude injecting hPSCs into early embryos of other species,

such as the pig. Most recently, on September 23, 2015, the NIH

issued a notice stating that research in which hPSCs are intro-

duced into non-human vertebrate animal pre-gastrulation stage

embryoswill not be fundedwhile the agency considers a possible

policy revision in this area (https://grants.nih.gov/grants/guide/

notice-files/NOT-OD-15-158.html). The NIH has invited scien-

tists and bioethicists to aworkshop onNovember 6, 2015 to eval-

uate the state of scientific and ethical issues in animal-human

chimera research and a revised guideline is expected to be in

place afterward.

Strategies to ease some of the ethical concerns, especially

those related to brain contributions, can be envisioned: due to

http://www.isscr.org/docs/default-source/hesc-guidelines/isscrhescguidelines2006.pdf
http://www.isscr.org/docs/default-source/hesc-guidelines/isscrhescguidelines2006.pdf
https://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-158.html
https://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-158.html
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marked differences in differentiation bias among hPSC lines

(Osafune et al., 2008), selecting lines that are inefficient for neural

differentiation could be considered. It has been proposed that

modulation of certain lineage transcription factors can influence

PSCs’ in vivo differentiation propensity (Kobayashi et al., 2015),

thus offering a path for avoiding neural contribution. Other

methods that could be worth considering include genetic inacti-

vation of key genes for human neural development (Zhang et al.,

2010) and/or implementation of safety switches similar to what

has been used for adoptive T cell therapy, which can trigger

apoptosis in hPSC-derived neurons (Di Stasi et al., 2011; Straa-

thof et al., 2005).
Conclusion
We have come a long way since the first capture of embryonic

pluripotency in culture. The derivation of mESCs has trans-

formed modern biology. Their abilities to indefinitely expand

in vitro and generate all adult lineages in vivo, combined with

gene editing technologies, have provided us with a vast treasure

of human disease models. The quest for understanding extrinsic

and intrinsic cues underlying pluripotency has contributed to the

recent isolation of various spatiotemporally divergent pluripotent

states. Chimeric competency is no longer a privilege of mESCs.

Naive ESCs capable of contributing to germline chimeras have

been derived from other rodents and most recently from the

cynomolgus monkey. Chimeric competency has also been

expanded into the realm of interspecies with naive ESCs effi-

ciently crossing xeno-boundaries among rodents for the gener-

ation of live interspecies chimeras. The discovery of a spectrum

of pluripotent states across intra- and inter-species domains will

open new avenues for uncovering novel and thought-provoking

areas of investigation in embryonic development, pathogenesis,

aging, and evolution.

These advances in animal models go hand in hand with the

rapidly evolving field of hPSCs and regenerative medicine.

hPSCs hold great potential to revolutionize the practice of med-

icine since they constitute the source fromwhere unlimited cells,

tissues, or even organs could be derived to treat numerous debil-

itating disorders. Despite substantial progress, to date, no

hPSC-based therapies have transitioned from experimental to

clinical practice. Infused with novel concepts in pluripotency

and equipped with the unique properties of naive and region-

specific hPSCs, regenerative medicine applications unlocking

the full potential of hPSCs can be envisioned. Empowered by

interspecies chimeric-competent rsPSCs, naive hPSCs, or other

novel PSC types, complex tissue and organ generation may, in a

not too distant future, become feasible.
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the Universidad Católica San Antonio de Murcia (UCAM).
REFERENCES

Amoyel, M., and Bach, E.A. (2014). Cell competition: how to eliminate your
neighbours. Development 141, 988–1000.

Aramaki, S., Hayashi, K., Kurimoto, K., Ohta, H., Yabuta, Y., Iwanari, H., Mo-
chizuki, Y., Hamakubo, T., Kato, Y., Shirahige, K., and Saitou, M. (2013). A
mesodermal factor, T, specifies mouse germ cell fate by directly activating
germline determinants. Dev. Cell 27, 516–529.

Bernemann, C., Greber, B., Ko, K., Sterneckert, J., Han, D.W., Araúzo-Bravo,
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